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1. INTRODUCTION 

 
Differential Reflectivity is a dual-polarimetric vari-

able with many factors able to impact its calibration. 
Hardware and software techniques have been ex-
plored in the radar community from built-in test sig-
nals to known-target estimation. Known-target estima-
tion includes targets such as a tethered sphere (e.g., 
Atlas 2002; Bechini et al. 2010) or distributed weather 
targets such as light rain or snow crystals that have 
been compared with video disdrometers and particle 
imaging systems (e.g., Ryzhkov et al. 2005; Cao et al. 
2008; Bechini et al. 2010). Vertical pointing is a type 
of known-target estimation assuming that the radar is 
scanning light rain/drizzle with little to no wind. Using 
information about the expected return in light rain can 
give an estimate of the total Differential Reflectivity 
(ZDR) Bias of the radar system (McCormick and 
Hendry 1975; Vivekanandan 2003). Due to a lack of 
appropriate weather and/or hardware constraints, 
some radar systems, such as the Weather Surveil-
lance Radar – 1988 Dual-Polarimetric Doppler (WSR-
88D), cannot use the Vertical Pointing Technique. 
Other known-target methods have been explored 
using information from non-vertical pointing radar 
returns of Light Rain, Dry Snow, and Bragg Scatter to 
estimate the ZDR Bias (Zittel et al. 2014; Zittel et al. 
2015; Richardson et al. 2017 a,b). For each of the 
methods, the ZDR Bias is estimated as: 

 
ZDR Bias = ZDRMeasured – ZDRIntrinsic          (1) 

 
where ZDRMeasured is the ZDR measured by the radar 
and ZDRIntrinsic is the expected ZDR value of a given 
target type.  

The original Light Rain technique estimates ZDR 
Bias from light rain targets via known intrinsic values 
of ZDR related to certain levels of reflectivity (Z). In-
formation from the Melting Layer Detection Algorithm 
(MLDA) ensure radar range gates used for estimating 
the bias are below the melting layer to avoid contami-
nation from frozen particles or super-cooled liquid 
drops that have a different characteristic in ZDR 
(OFCM 2017). Reflectivity between 19.0 and 30.0 
dBZ is considered below convective thresholds with 
some overlap with winter precipitation (Straka et al. 
2000). Large drops and/or melting particles within this 
reflectivity range can impact the estimation of ZDR, 
ultimately resulting in a high bias in the estimate. 
Work by Schuur et al. (2001; 2005) has shown that 
the expected ZDR of rain between 19.0 and 30.0 dBZ 

can range from 0.23 to 0.55 dB. Using an incorrect 
ZDRIntrinsic in this reflectivity range can introduce ZDR 
Bias estimation error and allow for larger variability of 
ZDR Bias Estimated from Light Rain (ZDRBELR).  

Dry Snow estimates are taken from range gates 
above the melting layer and classified as Dry Snow 
based on the Hydrometeorological Classification Al-
gorithm (HCA; Straka et al 2000; OFCM 2017). ZDR 
Bias Estimated from Dry Snow (ZDRBEDS) only uses 
radar range gates within the first 1 km height above 
the top of the estimated Melting Layer top. This par-
ticular region is known as a likely area to find dry ag-
gregates instead of crystals (Meishner et al. 1991; 
Zittel et al. 2014; Williams et al. 2015a,b). Estimates 
can still be influenced by errors from the MLDA and/or 
the HCA such as capturing the incorrect top of the 
melting layer and receiving some partially melted par-
ticles with larger ZDR values. A single ZDRIntrinsic of 
0.20 is used in the Dry Snow method. Using only one 
value reduces the chance for estimation variability but 
still includes potential error from not completely cap-
turing the needed ZDRIntrinsic in a given distribution 
environment.  

Instead of detecting a specific particle type, 
Bragg scatter comes from refractivity gradients relat-
ed to clear air turbulence (e.g., Atlas 1959; Hardy and 
Katz 1969; Melnikov et al. 2011, 2013; Davison et al. 
2013a,b). Being able to detect it depends upon on the 
transmitted wavelength – S-band radars, such as the 
WSR-88D, can detect it with adequate intensity while 
C-band and smaller wavelengths have more chal-
lenges detecting Bragg scatter (e.g., Knight and Miller 
1998). Bragg scatter has an intrinsic ZDR value of 
~0.0 dB, thus, it has the least risk of using an incor-
rect ZDRIntrinsic value when making the ZDR Bias es-
timate. Previous work has shown that estimates from 
Bragg scatter have the least variability compared to 
Light Rain or Dry Snow (e.g. Richardson et al. 
2017b). The ZDR Bias Estimated from Bragg Scatter 
(ZDRBEBG) technique does not use information from 
the Melting Layer Detection Algorithm or the Hydro-
meteor Classification Algorithm, thus it can be influ-
enced by other particles that have similar radar char-
acteristics. In particular, ZDRBEBG seems most influ-
enced by light winter precipitation. This results in a 
higher than expected ZDRBEBG value due to the 
non-zero ZDRIntrinsic value of the other particle types. 
Several statistical tests are included in the ZDRBEBG 
technique to avoid contamination from precipitation as 
well as biota. Results from Richardson et al. 
(2017a,b) show the filters adequately capture and 
eliminate the majority of contaminated estimates. 

Results from each estimation method are used to 
make long-term tracks of ZDR Bias at a single radar 
site (Figure 1). Because many internal and external 
factors impact ZDR Bias, estimates taken from each 
volume scan go into the calculation for a daily median 
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estimate of ZDR Bias for each estimation method. 
Such charts are used to assess sites with ZDR Bias 
beyond a recommended limit of ±0.2 dB. Correcting 
issues to bring ZDR Bias back within a recommended 
±0.2 dB threshold mitigates potential errors in Quanti-
tative Precipitation Estimation (QPE).  

Unfortunately, the increased variance and 
chance of having a more positive bias from large 
drops and convection reduces the reliability of the 
current Light Rain method compared to the Dry Snow 
and Bragg Scatter methods. This leads to estimates 
from Light Rain being ignored entirely when their 
trend is different from ZDRBEDS and ZDRBEBG re-
sults. Figure 1 shows an example where users may 
ignore the Light Rain estimates because the ZDR-
BELR trend differs noticeably compared to Dry Snow 
and Bragg Scatter around the same timeframe. Ques-
tionable reliability introduces interpretation challenges 
when only estimates from Light Rain are available 
because of the difficulty of determining the existence 
of a ZDR Bias beyond potential estimation error. An 
improved method of estimating ZDR Bias from Light 
Rain is explored to reduce the variability of estimates 
and minimize estimation bias. For this study, Light 
Rain characteristics and related ZDR Bias estimation 
are considered using only non-derived products of 
Reflectivity (Z), Signal-to-Noise Ratio (SNR), Differen-
tial Reflectivity (ZDR), Correlation Coefficient (RHO), 
and Differential Phase (PHI). No information from 
derived products such as the MLDA or HCA is used in 
this study to avoid compounding potential errors from 
those products. As such, the authors admit the ne-
cessity for extra scrutiny in determining non-
contaminated light rain returns in radar data. 
 

2. FACTORS OF ESTIMATES FROM LIGHT RAIN 

 

2.1 Tropical vs. Continental 

 
Previous work has shown that the value of ZDR 

spreads with increasing reflectivity depending on the 
environment. Figure 2 (Figure 10 in Cao et al. 2008) 
shows Z vs. ZDR for rain data from disdrometers in 
Oklahoma and the estimated mean line from their 
other study in Florida (Zhang et al. 2001; Cao et al. 
2006). Higher reflectivity values result in an increase 
in the expected ZDR based on the mean while also 
increasing the spread of possible ZDR observed in 
light rain. A mean continental trend at a higher ZDR 
values than the tropical trend relates to tropical envi-
ronments more often have distributions of many small 
drops compared to the large drops developed during 
convective growth (e.g., Bringi et al. 2003).  

The original ZDRBELR technique on the WSR-
88D uses the intrinsic ZDR values for each specific Z 
category shown in Table 1. These roughly follow the 
mean line in Figure 2, yet the spread of ZDR values 
increases as dBZ increases. Estimating from Figure 
2, the spread of data at 20 dBZ is from 0.0 up to 1.0 
dB. By 25 dBZ the spread is from 0.0 up to 1.6 dB – 
at least 0.6 dB more spread than 20 dBZ. One option 
to reduce variance is to use only the lowest category 
with Z values between 19.0 and 21.0 dBZ. The mean 
ZDRIntrinsic values are between 0.23 and 0.27 dB; we 
opted to use 0.25 dB because it is between the cate-

gories and leans more towards the naturally higher dB 
values that could come from distribution contamina-
tion from larger drops. That is, using a slightly higher 
intrinsic value helps mitigate impacts from some larg-
er drops. 

 
TABLE 1. ZDRIntrinsic values associated with specific 

ranges of Z in the original ZDRBELR method. 

Z (dBZ) ZDRIntrinsic (dB) 

19.0 – 20.5 0.23 
21.0 – 22.5 0.27 
23.0 – 24.5 0.32 
25.0 – 26.5 0.38 
27.0 – 28.5 0.46 
29.0 – 30.5 0.55 

 
2.2 Base Data Filters 

 
All radar range gates with Reflectivity values be-

tween 19.0 and 21.0 dBZ can be collected as part of a 
statistical sample set for estimating ZDR Bias, but 
reflectivity alone does not convey the cleanliness or 
adequacy of making an estimate from the return. Re-
turns could be contaminated by ground clutter signals, 
biota, other meteorological particles, or down-radial 
attenuation.  

Signal-to-Noise Ratio (SNR) can be used to en-
sure returns are adequate enough signal to use for 
estimation of ZDR Bias. Requiring SNR above 20 dB 
matches the existing ZDRBELR and ZDRBEDS tech-
niques. The threshold is carried through in this study 
as a metric for accumulating data for statistics. 

Requiring Correlation Coefficient (RHO) to ex-
ceed 0.98 is another existing threshold of the ZDR-
BELR and ZDRBEDS methods. Lower correlation 
coefficient values often correspond with ground clut-
ter, biota, or mixed return types. A uniform distribution 
is desired for the estimation of ZDR Bias from light 
rain due to the large variability of the ZDRIntrinsic value 
between particle types and sizes.  

A range limit of 10 to 250 km (~5 to 135 nmi) can 
be used to avoid near-radar ground clutter and reduce 
the chance for encountering the melting layer and 
potential ice crystals. This range limit could be ex-
tended if using information from derived products 
such as the Melting Layer Detection Algorithm, which 
are not being used in this study to avoid compounding 
errors from derived products. The narrow range limit 
from 10 to 250 km coupled with an elevation angle 
limitation can mitigate impacts from ground clutter 
with the lower limit and ice crystal contamination with 
the upper limit. Elevation angles less than 1.8° were 
selected to pair with the range limits to keep below 
the melting layer as much as possible without addi-
tional outside information.  

Winter weather conditions can overcome the ele-
vation, range, and RHO filters suggested above be-
cause snow and ice crystals often have the same 
characteristics as light rain in radar data. Areas of 
melting snow around the melting layer would not pass 
the RHO filter, so major impacts from regions of large, 
wet drops will not pass through the filters. Impacts 
from nearby convection seeding clouds generating 
some large drops within a distribution of mostly small-
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er drops would also be missed with these filters and 
could impact bias estimation. Because these base 
filters cannot overcome winter weather and some 
convective influences, other statistical tests may be 
used to distinguish which range gates should be used 
for ZDR Bias estimation.  

  

3. TRAINING DATA SET 

 
3.1 Site/Time Selection 

 
To determine statistical filters that could be used 

for ZDRBELR, cases determined to be light rain must 
be explored for their statistical metrics. Comparisons 
are made with other influences such as convection, 
winter weather, and biota/clutter. Training data should 
therefore span a sufficient amount of time to capture 
the chance for winter weather and convection such as 
a full year. A timeframe from July 2016 through July 
2017 covers this well and can be assessed quickly 
using shade charts such as the example shown in 
Figure 1. We selected a set of sites to be used for a 
training data set using the following criteria based on 
the shade charts: 
1) The relative ZDR Bias trend between the three 

external target methods must be relatively stable 
across the entire year. Sites with large changes 
related to known hardware changes that could 
impact ZDR Bias are excluded to avoid contami-
nating the data set. 

2) Sites with a ZDR Bias trend close to 0.0 dB were 
preferred. Sites with bias are allowed, but the bi-
as must be accounted for when used in the train-
ing data set. 

3) Sites with ZDRBELR values notably different from 
ZDRBEDS and ZDRBEBG were separated out 
for use in the verification data set. Sites with 
ZDRBELR close to the other target trends were 
key candidates for the training data set. 

4) The site must have ZDRBELR values for over half 
of the year to be relevant for the training data set 
which needs as much data as possible across 
different seasons of the single year. 

5) WSR-88D sites with multi-transmitter configura-
tions were excluded from the training and verifi-
cation data set to avoid complications of mixing 
information from the different configurations. 
Each hardware chain has a unique ZDR Bias that 
can be difficult to isolate in a bulk statistic without 
meticulous calculations beyond the scope of this 
study. 

Figure 3 shows examples of 6-month shade charts 
and their relation to the criteria above. 

A set of 24 sites were selected to be used to de-
termine what the radar views as Light Rain targets 
(Figure 4 and Table 2). The sites cover a range of 
geographical environments, yet geographical spread 
was not used as a criterion for selection. A grouping 
of sites along the Northern Mississippi River Valley 
was pure chance that may be related to the weather 
events and environment seen specifically between 
July 2016 and July 2017.  

Four sample months in this timeframe were used 
to get a sample of statistical metrics: July 2016, Octo-
ber 2016, January 2017, and April 2017. For each 

month, the monthly estimated ZDR Bias was applied 
as a correction factor to ZDR values for the given site 
to place the values closer to natural, unbiased ZDR to 
more accurately calculate statistical metrics that relate 
to light rain targets. The monthly value used for each 
site is listed in Table 2.  

 
TABLE 2. Training Data Set WSR-88D sites and their 

monthly ZDR Bias Estimate correction factor. 

  Monthly ZDR Bias Estimate 

Site Location Jul 
2016 

Oct  
2016 

Jan 
2017 

Apr 
2017 

KAPX Gaylord, MI +0.08 +0.02 +0.10 +0.09 
KBHX Eureka, CA -0.36 -0.08 -0.08 -0.12 
KBOX Boston, MA +0.11 -0.03 -0.03 -0.08 
KBRO Brownsville, TX +0.07 -0.05 -0.11 -0.07 
KCBW Caribou, ME +0.12 +0.05 -0.05 +0.06 
KCXX Burlington, VT +0.06 -0.03 +0.01 +0.05 
KDGX Jackson, MS +0.24 +0.01 -0.07 +0.00 
KDVN Quad Cities, IA +0.10 +0.06 +0.06 +0.08 
KEMX Tucson, AZ -0.10 -0.18 -0.15 -0.04 
KEYX Edwards AFB, CA +0.29 -0.06 -0.06 -0.07 
KFWS Fort Worth, TX -0.09 +0.04 -0.11 -0.06 
KHTX Huntsville, AL +0.10 -0.06 -0.08 +0.07 
KILX Lincoln, IL +0.05 -0.02 -0.01 +0.01 
KLSX St. Louis, MO -0.04 -0.05 -0.02 +0.00 
KLWX Sterling, VA +0.04 +0.02 +0.04 +0.02 
KMKX Milwaukee, WI +0.10 +0.07 +0.11 +0.07 
KPAH Paducah, KY +0.00 -0.04 -0.06 +0.00 
KPDT Pendleton, OR -0.02 -0.08 -0.08 -0.06 
KPUX Pueblo, CO +0.09 -0.04 +0.00 +0.02 
KSHV Shreveport, LA +0.12 +0.13 +0.11 +0.13 
KTLH Tallahassee, FL -0.03 -0.11 +0.08 +0.16 
KTLX Oklahoma City, OK -0.02 +0.07 +0.04 +0.07 
KUDX Rapid City, SD -0.04 -0.14 -0.10 -0.10 
KVNX Vance AFB, OK +0.04 +0.13 +0.00 +0.03 

 
Each volume scan from the site in the given 

month was processed using MATLAB 2017b with the 
base filters previously mentioned above applied to 
each applicable elevation scan: 

 

 Elevation Angle < 1.8° 

 10 km < Range < 250 km 

 19.0 < Z < 21.0 dBZ 

 SNR > 20 dB 

 RHO > 0.98. 
 

Radar range gates that pass the above filters were 
accumulated into histograms of ZDR, RHO and PHI. 
Each histogram used categories of their natural data 
resolution, so the full data set of actual values could 
be pulled out of the histogram if needed. Grouping of 
categories at values larger than the natural resolution 
could skew statistical metrics needed for distinguish-
ing between return types. The mode of the resulting 
ZDR histogram was reported for each volume to be 
used for outlier analysis later. 
 A separate histogram of Z was collected that only 
uses the elevation and range limit. The wider range 
allowance of Z data will be used to assess the overall 
environment beyond the Z-filter limits used for ZDR 
Bias estimation. Categories range from -32.0 to 40.0 
dBZ in 0.5 dBZ increments (the natural resolution of 
Z). Values of 40 dBZ and above are generally related 
to convection, so any histograms with high counts in 
this category are more likely to have influences from 
convection due to our use of a category cap.  
 Because the existing external target techniques 
accumulate information per volume scan and combine 
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these data into an estimate for a single day, an aver-
age of each metric from all volume scans in a given 
day were reported. Thus, the definition of a “Case” in 
this study relates to a single date in relation to 00 
through 24 UTC. Cases do not span multiple days 
even in the larger meteorological event crosses dates. 
This ensures we can compare our existing daily met-
rics to daily cases.  
 
3.2 Visual Confirmation of Cases 

 
 All days with metrics that pass the base filters with 
resulting statistical metrics were analyzed visually to 
classify the event type into one of four groups:  

 Light Rain: Returns between 10 and 250 km have 
no reflectivity values above 45 dBZ anywhere in 
the domain, and dual-polarimetric variables have 
high correlation and relatively similar PHI and 
ZDR values without signs of mixed particle types 
or heavy attenuation.  

 Convection: High reflectivity values and structures 
associated with convective influences. This may 
include signs of attenuation and mixed particle 
types such as rain and hail or different sizes of 
rain drops across a non-uniform Drop Size Distri-
bution.  

 Winter Weather: Signs of the melting layer or win-
ter precipitation types anywhere within the 10 to 
250 km limit. Many of these cases include Rain 
and Snow events that could be used for estima-
tion hydrometeorological identification algorithms 
selected rain-specific bins. For our study without 
such data, we used the extreme approach to 
avoid all potential contaminants and strictly clas-
sify all cases with any chance of winter weather 
influence as Winter Weather cases. 

 Clutter/Biota: Cases with most visible returns from 
Anomalous Propagation, Ground Clutter, inter-
ference or biological targets (e.g., birds or bugs).  

Figure 5 displays an example of each Case classifica-
tion. Images only go out to 150 km (~80 nmi) instead 
of 250 km for closer analysis of features in the exam-
ple images. Textures of the returns, dual-polarimetric 
signatures, and reflectivity values quickly help deter-
mine the classification of a case. Some cases, espe-
cially Winter Weather cases, required additional veri-
fication from temperature and sounding records for 
complete confidence in the classification. 
 A total of 270 cases were visually inspected for 
return types over the given day. If any potential re-
turns able to pass the filter were possibly contaminat-
ed, the cases were strictly placed in the classification 
with the possible contaminant. 153 cases had the 
potential for Convection, and 66 cases had potential 
impacts from Winter Weather. These cases may have 
significant areas of Light Rain within the 10-250 km 
range, but we are using the strict rules in this study to 
avoid estimation error. A total of 40 cases visually 
passed to be considered Light Rain, and only 6 cases 
were classified as Clutter/Biota because the Base 
Filters remove most of these already. Next, statistical 
metrics are used to determine characteristics of each 
category. 
 

 
 
3.3 Statistical Metrics 

 
Outliers can be defined as a certain deviation 

away from a mean value. If an accurate long-term 
trend is the focus, a monthly mean can be used as a 
metric for determining outliers of daily cases. For 
each month at each site, the mean of daily ZDR mode 
estimates was used to calculate a monthly mean. 
Each daily case ZDR mode was then compared to the 
monthly mean for determination of outlier cases. We 
chose the standard statistical definition, ±2 standard 
deviations away from the monthly mean, to mark a 
case as an outlier.  

The classification of outlier/non-outlier for each 
case assists with testing of statistical filters to capture 
cases of Light Rain while avoiding cases with poten-
tial contaminants. Some cases of Convection and 
Winter Weather pass as non-outliers, which may be 
related to the strict rules we used for filtering. That is, 
the cases that pass as non-outliers may be mostly 
light rain with a small amount of potential contamina-
tion in the same viewing region. 

The Bragg Scatter technique development re-
vealed that the 90

th
 Percentile of Z (Z90th) shown in 

Figure 6 (Figure 3 in Richardson et al. 2017a) exhibits 
a clear distinction between Bragg Scatter and precipi-
tation. Additionally, the test of Inter-Quartile Range 
(IQR) is a useful filter for distributions with contamina-
tion such as biota or ground clutter. Such metrics 
could be refined for distinguishing light rain distribu-
tions from those with other target types or contamina-
tion. The following metrics were calculated for each 
volume scan for analysis: 

 

 The total count of range gates accumulated in the 
ZDR histogram: ZDRCount  

 The IQR of ZDR: ZDRIQR 

 The Median Absolute Deviation around the medi-
an (MEDAD) of ZDR: ZDRMEDAD 

 The 90
th

 Percentile of Z: Z90th 

 The IQR of Z: ZIQR 

 The MEDAD of Z: ZMEDAD 

 The IQR of RHO: RHOIQR 

 The MEDAD of RHO: RHOMEDAD  

 The IQR of PHI:  PHIIQR 

 The MEDAD of PHI: PHIMEDAD 
 

One may notice that almost all of the metrics listed 
are related to a spread test. Focus was put on spread 
metrics because contaminants combined with light 
rain returns cause more spread in the distribution and 
resulting histogram. This focus ties back to a leading 
goal of the study to mitigate variability of ZDRBELR 
values. 

Metrics were compared via density plots to de-
termine if any relationships existed to clearly define 
light rain samples. Each of the comparison metrics 
encompasses data for a single month of interest – 
data were not combined across the four focus 
months. Figure 7 shows an example relationship be-
tween the estimated ZDR mode based on the ZDR 
histogram in relation to the ZDRIQR. The following 
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calculations were used to threshold results for clearer 
focus of interest regions: 

 
Count Threshold = max (range gate count)/3     (2) 

Other Metrics Threshold = max(metric)/2.        (3) 
 
A division of three is used for the total count threshold 
because of the large overall number achievable com-
pared to other metrics. All other metrics can sufficient-
ly use a division of 2 to focus on a region of a density 
plot (Figure 7c and d).  

Light rain metrics for KVNX in July 2016 shown in 
Figure 7 fall between 0.20 and 0.50 dB of ZDR based 
on the ZDR mode. This matches very closely with the 
distribution from the disdrometer study in Figure 2, 
which gives confidence to the effectiveness of the 
chosen Base Filters. Estimates correspond with a 
ZDRIQR between 0.50 and 0.75 dB for this site month 
combination. With a natural resolution of 0.0625 dB, 
this relates to a spread of at least 8 categories up to 
12 categories. A more narrow spread in the histogram 
could be related to a different return type, such as 
winter weather, while a broader spread could be re-
lated to influences from biota or convection. 

These metrics were also compared to the classi-
fication determined by visual analysis. Exploration of 
the statistical metrics revealed that certain metrics 
had no strength at distinguishing Light Rain from oth-
er cases. The ZDRCount filter is effective for avoiding 
cases marked as Biota/Clutter. Both RHOIQR and 
RHOMEDAD had no strength in filtering Light Rain from 
other classes. It is suspected this is in relation to the 
existing Base Filter specifying all RHO values must 
exceed 0.98. As such, the spread of RHO will always 
be narrow when considering values between 0.98 and 
the maximum of 1.05. For PHI, the IQR was effective 
at eliminating Convection cases, but the MEDAD has 
no strengths as a filter. 

Z90th between 15.0 and 27.0 dBZ worked well 
even though overlap with other precipitation types is 
likely on the ends. ZIQR between 12.0 and 18.0 were 
effective for eliminating many Winter Weather and 
Convection cases. ZMEDAD had no additional benefit 
compared to using the ZIQR. 

ZDR had most benefit when using both the IQR 
and MEDAD as filters to keep Light Rain cases. The 
combination is effective for filtering out Winter Weath-
er Cases at the low end and Convection at the high 
end. ZDRIQR ranges from 0.5 to 0.70 dB worked well 
for Light Rain, while ZDRMEDAD ranged from 0.200 and 
0.375 dB.  

Table 3 shows the total number of cases by cat-
egory that pass when using specific statistical filters. 
Cases are broken into groups considered Outliers and 
Non-outliers as mentioned previously. The goal of 
keeping more non-outlier cases, and prioritizing the 
ones classified as Light Rain presents challenges due 
to significant overlap of characteristics. Reducing non-
outlier Convection and Winter Weather cases often 
impacted Light Rain as well. Thus, only ~37% of the 
cases classified as Light Rain pass the statistical fil-
ters. On the other hand, almost all outlier cases are 
effectively removed with statistical filters applied. 

 

TABLE 3. Cases categorized by visual analysis in the 
Training Data Set and the remaining percentage of 

cases after applying suggested filters. 

 Sum Filtered Sum % 

Non-Outlier Light Rain 40 15 37% 
Non-Outlier Convection 95 13 14% 
Non-Outlier Winter Weather  44 3 20% 
Outlier Clutter/Biota 6 0 0% 
Outlier Convection 63 8 13% 
Outlier Winter Weather 22 2 9% 

 
Balancing the number of Light Rain cases kept 

with certain filter limits while reducing all other types 
of cases proved most challenging with the Winter 
Weather cases. Recall that Winter Weather cases 
include cases with light rain and winter precipitation 
targets. Thus, it is expected that the statistical metrics 
would still struggle with such cases. The statistical 
filters could be selecting cases with lower impacts 
from winter precipitation targets, but detailed analysis 
of that scale for each case is beyond the scope of this 
study. 

 
3.4 Recommended Algorithm 

 
During review of cases and metrics, other radar 

experts strongly suggested that the base filter be lim-
ited to a range of 150 km instead of 250 km. The au-
thors accepted the suggestion as part of the verifica-
tion data set to mitigate concerns about influence 
from frozen particles aloft. Ultimately, the following is 
recommended for ZDR Bias Estimation from Light 
Rain: 

 
Step 1) Filters per Elevation Sweep 

 Elevation Angle < 1.8° 

 10 km < Range < 150 km 

 19.0 < Z < 21.0 dBZ 

 SNR > 20 dB 

 RHO > 0.98 
Step 2) Statistical Filters per Volume 

 ZDRCount > 600 

 0.50 <= ZDRIQR <= 0.70 dB 

 0.200 <= ZDRMEDAD <= 0.375 dB 

 15.0 <= Z90th <= 27.0 dBZ 

 12.0 <= ZIQR <= 18.0 dB 

 0.3 <= PHIIQR  <= 6.0 degrees 
Step 3) Calculate the mode of the ZDR histogram if it 

passes the filters from step 2. 
  

4. VERIFICATION DATA SET 

   
4.1 Site Selection 

 
Similar to the Training data set, the Verification 

data set sites follow the criteria described in Section 
3.1. The site must have ZDRBELR values at least half 
of the time of interest and cannot have a large change 
in the ZDR Bias trend related to known hardware 
changes/errors. The trend of ZDR Bias estimated 
from rain with the original method should be notably 
different from the trend seen with Dry Snow or Bragg 
Scatter methods. Sites with a positive-value ZDR-
BELR trend when the ZDRBEDS and ZDRBEBG 
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show negative-value trends are prime candidates for 
testing if the new method overcomes the natural high 
bias from the original method.  

Sites selected for the Verification data set will not 
be any sites used in the Training data set if using the 
previously-defined criteria. A separate set of 15 sites 
were selected to be used for a Verification data set 
(Figure 8 and Table 4). Again, geographical regions 
were not considered as part of site selection. The 
grouping of sites in the Southern Plains is likely relat-
ed to the region receiving more precipitation from 
maritime air masses coupled with convective pro-
cesses between July 2016 and July 2017.  

 
TABLE 4. List of Verification Data Set WSR-88Ds. 

  
Site Location 
KAMA Amarillo, TX 
KBGM Binghamton, NY 
KDDC Dodge City, KS 
KFDR Altus AFB, OK 
KGRB Green Bay, WI 
KICT Wichita, KS 
KINX Tulsa, OK 
KIWX North Webster, IN 
KMAF Midland/Odessa, TX 
KMPX Minneapolis, MN 
KOHX Nashville, TN 
KPBZ Pittsburgh, PA 
KRLX Charleston, WV 
KSGF Springfield, MO 
KTWX Topeka, KS 

 
Four focus months across the year were used for 

training, yet such a selection cannot be easily com-
pared to a long-term trend like the 6-month shade 
chart. We chose to use the timeframe from February 
2017 through July 2017 as the Verification set for 
comparison with long-term trends. This timeframe 
allows the new ZDRBELR method to be tested with 
extremes of Winter Weather cases early that transi-
tion to more cases with Clutter/Biota and Convection 
during the end of the timeframe. Additionally, spring 
months are often the most active weather months 
across the Contiguous United States, so the 
timeframe will ensure we are testing the method un-
der some of the most difficult conditions available.  

Each volume scan from the 15 sites was pro-
cessed using the algorithm in Section 3.4 for the six 
months of February 2017 through July 2017. To 
match the process of the Dry Snow, and Bragg Scat-
ter routine, volume-based calculations of the ZDR 
mode are used to calculation the ZDR Bias using 
equation (1). A ZDRIntrinsic value of 0.25 dB is used for 
all ZDRBELR values in this study as mentioned previ-
ously. The resulting ZDR Bias estimates for each vol-
ume go into a calculation for a median daily estimate, 
the points on the shade charts. 

 
4.2 Visual Trend Comparison 

 
Shade charts quickly give an overview of how the 

ZDRBELR method changes impact the long-term 
trend of ZDR Bias for given site. Comparisons of the 
new method and the original method from four of the 
Verification set sites are discussed. Shade charts for 
the timeframe shown are specific to weather events 
solely from the timeframe and do not represent any-

thing about the site/location in terms of general ZDR 
Bias trend or climatology of weather received beyond 
that given timeframe. 

Midland/Odessa, TX (KMAF) is located in a semi-
arid region that manages to receive snow in the winter 
and a moderate amount of convective weather during 
warmer months. From February through July 2017, 
KMAF received multiple estimates of ZDR Bias from 
all three external target types (Figure 9). The system 
started out with a negative ZDR Bias (colored blue on 
the chart). A slow increase in ZDR Bias occurred in 
June as suggested by the Dry Snow and Bragg Scat-
ter estimates. This trend is completely obscured by 
the original method but is apparent with the improved 
algorithm. Some outliers from the trend are still no-
ticeable, such as the event around 15 June 2017. 
Contamination from convection is a likely candidate 
based on the timeframe. Detailed analysis of such 
outlier cases in terms of the meteorology are beyond 
the scope of the study here yet should be mentioned 
for potential studies in the future. 

Trends from Springfield, MO (KSGF) based on 
ZDRBEDS and ZDRBEBG show a negative ZDR Bias 
at the site for the entire 6 month timeframe (Figure 
10). Estimates from all three external target types are 
available throughout the time period, partially in re-
sponse to the sites proclivity to receive precipitation 
from mid-latitude cyclones and slightly cooler temper-
atures reducing the biota coverage for a longer time 
throughout the year. Estimates from the original Light 
Rain method show several shading regions with posi-
tive ZDR Bias even though the two other metrics con-
firm a negative ZDR Bias value. Estimates and the 
overall trend from the new method for ZDRBELR 
match with the ZDRBEDS and ZDRBEBG data. Even 
small areas of change, such as around 14 March 
2017 and 05 May 2017, match in moving to a slightly 
more positive ZDR Bias estimate before returning 
around the original value. It should be clarified that 
the exact estimation points and days on the chart are 
not expected to match because each estimation tar-
get type may occur at different times and use their 
own specific rules for estimating ZDR Bias. 

Minneapolis, MN (KMPX) is located at latitude that 
receives winter precipitation for more months out of 
the year compared to KMAF and KSGF (Figure 11). 
This appears in the shade chart as there are few to no 
estimates from Light Rain until April 2017. Estimates 
from Light Rain for the rest of the timeframe have a 
more positive value than the estimates from Dry Snow 
and Bragg Scatter. The trend matches closely be-
tween all three methods with the improved Light Rain 
estimation, yet there are more estimates during the 
winter and early spring. This could be related to multi-
ple variables, specifically potential cases of mixed 
precipitation with liquid and frozen particles. Addition-
ally, the original method uses information from de-
rived products unavailable to our processing scheme 
for this study. If information about the melting layer 
and hydrometeor classification were combined with 
the improved estimation technique, the number of 
winter weather events appearing as Light Rain would 
be expected to decrease.  

Finally, an example from Dodge City, KS (KDDC) 
reveals a natural variation of ZDR Bias across the 



7 

 

timeframe unrelated to hardware changes (Figure 12). 
A positive ZDR Bias turns more negative around 23 
March 2017 and moves back towards positive values 
around 24 May 2017. This trend is almost completely 
overcome by the large positive bias from the original 
method due. KDDC is located in the Central Plains 
part of the Contiguous United States and receives a 
significant amount of strong convection throughout 
the year. Convective influences creating larger drops 
within drop size distributions can result in such a posi-
tive bias as seen here. With the new technique, Light 
Rain estimates clearly match the trend seen with the 
Dry Snow and Bragg Scatter techniques. Additionally, 
the variability of estimates appears reduced even 
during times with an increased risk of influence from 
convection in May through July. The new technique 
does have the potential for increased cases of light 
rain and winter precipitation, but it is unclear how 
much influence frozen particles are having on each 
case. These cases could be used for future studies 
into details of contribution types.   

  
4.3 Estimated Rain Outliers 

 
Assessing the daily points to the monthly trend 

can distinguish differences between the new and orig-
inal method with regards to accurately capturing Light 
Rain targets that can be used for estimating ZDR Bi-
as. Valid targets of Light Rain are expected to have 
reduced standard deviation and a reduced magnitude 
and number of outliers. For each site/month, the 
standard deviation was computed (Figure 13a). The 
new method shows lower standard deviations for a 
majority of the site/month combinations. It should be 
noted that the singularly high value around index 20 is 
related to an estimate reaching the maximum ZDR 
value reported of +8.0 dB due to clutter/biota contam-
ination. Both the new and original methods are sus-
ceptible to such errors, so the y-axis is scaled for bet-
ter focus of differences (Figure 13b). A difference 
between the original and new methods more clearly 
shows the majority of site/month combinations have 
improved standard deviations as only a few values fall 
below 0.0 dB (Figure 14).  

Comparing the total number of outliers must be 
done as a ratio or percentage because the require-
ments for creating an estimate means that some days 
with an estimate in one method will not have an esti-
mate in the other. This is evidenced by the differing 
total number cases reported by the original and the 
new techniques. Another way to determine differ-
ences of method accuracy comes from comparing the 
magnitude of difference between the outliers and the 
mean. In effect, this is an estimate of the bias of esti-
mates seen with each method type because a bias is 
a difference of the estimate from the mean. Shade 
charts suggest the rain methods will have a positive-
valued bias.  

Results in Table 5 reveal that the new method and 
original method have approximately the same per-
centage of outliers for the relatively small sample set, 
but the magnitude of outliers is approximately half 
when using the new method. Impacts of high variabil-
ity naturally available in the estimates could reduce 
the chance of classifying a case as an outlier when 

comparing rain to rain. High standard deviation values 
increase the range that must be exceeded to count as 
an outlier, thus the total number of outliers may be 
smaller than expected. Variability of the estimate can 
be compared using the Inter-Quartile Range of daily 
estimates over a given site/month. Lower spread as 
indicated by lower IQR values suggest the new meth-
od has less overall variability compared to the original 
method. 

 
TABLE 5. Daily values of ZDRBELR compared to the 

monthly mean trend of ZDRBELR. 

 Original New 

Total Days Assessed 2715 2715 
Number of Events 993 1086 
Number of Outliers 35 33 
Percentage of Outliers 4 3 
Average Bias (dB) +0.42 +0.21 
Average IQR of Estimates (dB) 0.22 0.15 

 
Thus far we have only compared rain to rain, yet a 

goal of the study is to ensure the overall trend from 
the three external target methods is similar. Previous 
examples showed the existing similarity of trends be-
tween Dry Snow and Bragg Scatter techniques, and 
the shade chart examples suggest the new technique 
matches these more accurately. For quantification 
tests, mean values of the ZDRBEDS and ZDRBEBG 
daily estimates were calculated to represent the trend 
for each site/month. Daily estimates of ZDRBELR 
were compared to this Snow/Bragg trend for calcula-
tions of variability and outliers (Table 6). Immediately 
noticeable is the larger number of cases marked as 
an outlier compared to the Snow/Bragg trend. The 
total number of outliers and overall bias is smaller 
with the new method compared to the original meth-
od. This corresponds well with the shade chart exam-
ples showing a similar matching trend between all 
three external target methods. Some outlier cases are 
still present, but the percentage is reduced by more 
than half of the original outlier percentage.  
 

TABLE 6. Daily values of ZDRBELR compared to the 
monthly mean trend based on ZDRBEDS and 

ZDRBEBG combined. 

 Original New 

Total Days Assessed 2715 2715 
Number of Events 993 1086 
Number of Outliers 406 174 
Percentage of Outliers 41 16 
Average Bias (dB) +0.35 +0.22 

 

5. SUMMARY AND DISCUSSION 

 
  External targets of Light Rain, Dry Snow, and 

Bragg Scatter can be used to estimate ZDR Bias on 
weather radars using data collected from normal op-
erational scans. This is a preferred method on sys-
tems that cannot vertically point or are limited by op-
erational scan times that take additional time to do a 
separate vertically-pointed scan. Such methods on 
the WSR-88D systems are used to track the relative 
ZDR Bias over time frames spanning several months. 
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There are many times when the trend from the ZDR 
Bias Estimated from Light Rain does not match the 
ones for Dry Snow or Bragg Scatter. Generally the 
estimates from Light Rain can result in a higher than 
expected result due to contamination from other parti-
cles or differences in the drop-size distribution related 
to convective influences. These differences between 
target types decrease confidence in the existence of a 
ZDR Bias and overall assessment of the bias value. 
ZDRBELR values also showed more variability than 
other external targets and contributes to decreased 
confidence in the estimate. 

Several steps were explored to reduce variability 
of the estimates from Light Rain while also reducing 
the high bias. The first step was reducing the set of Z 
values to a narrow region with a single ZDRIntrinsic val-
ue instead of a larger region with more natural varia-
bility. A ZDRIntrinsic value of 0.25 dB was selected to 
represent regions of light rain associated with the 
narrow Z limits. This value is close to previously sug-
gested values of 0.23 and 0.27 dB and leans slightly 
more positive as a chance to mitigate chance of re-
ceiving a high bias estimate from a light rain distribu-
tion due to other particle types. Using a ZDRIntrinsic of 
0.25 dB for light rain is only 0.05 dB higher than the 
value used for Dry Snow. As such, estimates from the 
Light Rain method that truly are dry snow instead 
would only have potential errors of 0.05 dB from the 
ZDRIntrinsic selection. This does not account for other 
estimation errors due to contents of the sampling dis-
tribution.  

Base Filters on the data facilitate isolating radar 
range gate returns that are most likely to be related to 
light rain signatures. Information from the resulting 
Base Filter data set was used to create a Training Set 
using four months of data from 24 WSR-88D sites. 
Statistical metrics were explored for each set to de-
termine if filters could be used to better isolated Light 
Rain events from cases with potential contamination 
from things such as frozen particles or convection that 
would introduce larger errors in the ZDR Bias esti-
mate. Cases were visually analyzed by a team of ra-
dar experts and classified into categories of Light 
Rain, Winter Weather, Convection, and Clutter/Biota. 
Classifications used strict rules, so some cases have 
overlap that may pass statistical filter tests. A set of 
Statistical filters was found that keeps more Light 
Rain cases while reducing the number of contamina-
tion cases. These filters also reduce the number of 
cases marked as outliers and keep more non-outlier 
cases.  

A new algorithm was proposed for ZDR Bias Esti-
mation from Light Rain that accumulates data from 
individual elevation angles of a volume scan which 
are then used to calculate statistical metrics. If the 
data set passes the Statistical Filters, then a ZDR 
Bias value can be estimated from the data set with a 
higher confidence level. Six months of data from 15 
separate WSR-88Ds served as a Verification Set. 
Results from the verification revealed trends that 
match more closely with ZDRBEDS and ZDRBEBG 
when using long-term trend shade charts. Further-
more, quantitative estimates of the number of variabil-
ity, number of outliers, and magnitude of outliers show 

improvement with the new method compared to the 
original metric. 

The cases in this study are from a limited number 
of sites over a limited time frame that may not be rep-
resentative of other time frames or locations. Calcula-
tions were the same for the original and new method, 
so the metrics should be justifiable with the caveat of 
the known time frame and potentially small sample 
size in both. Improvements seen with the small sam-
ple are significant enough to recommend using the 
new method as an operational ZDR Bias estimate 
compared to the original method.  

Information from derived products such as hydro-
meteor classification or melting layer detection could 
be used to further reduce the chance of estimation 
error from other target types. Such additions would be 
required if the technique focused on higher elevation 
angles that are more likely to encounter the melting 
layer and frozen particles more quickly in range. Im-
pacts of additional constraints could be explored in a 
future study or in an operational test environment with 
access to full products in real time. 

ZDR Bias estimation is a challenge for all polari-
metric weather radar systems. Many methods have 
been explored, and they all have unique caveats. 
Using multiple separate tests for estimating ZDR Bias 
is one way to increase confidence in the existence 
and reported value of a ZDR Bias. The improved 
method presented in this study shows promise as 
another technique to estimate ZDR Bias with a higher 
confidence level. 
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8. FIGURES 

 
 

 
FIGURE 1. Example of a Shade Chart used to track ZDR Bias at a single WSR-88D site with estimates from Dry Snow 
(top panel), Bragg Scatter (middle panel), and Light Rain (bottom panel). The individual points in each panel repre-

sent the daily median ZDR Bias estimated from the given external target type. Shading is created by taking the 7 day 
median centered on the given date (i.e., using 3 before and 3 after). Information from all three external target meth-
ods are combined into a monthly weighted mean of the monthly median estimates. Weights are 0.42 for Bragg Scat-
ter, 0.33 for Dry Snow, and 0.25 for Light Rain which roughly matches the order of least to most variability from the 
estimates. The weighted mean is a standard calculation on the chart but will not be discussed in detail in this study. 
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FIGURE 2. Originally Figure 10 in Cao et al. (2008), the plot of Z (dBZ) vs ZDR (dB) from disdrometer measurements 
in Oklahoma is shown here with additional axis lines to facilitate estimation of the total ZDR spread associated with 
specific Z categories. The solid line represents the mean relationship from the given disdrometer information while 

the dashed line represents the mean relationship seen from data collected in Florida. 
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FIGURE 3. Examples of shade charts categorized into potential usefulness as a training data set or verification data set 

point using the criteria in Section 3.1. 
 
 
 
 



14 

 

 
FIGURE 4. Map showing the locations of WSR-88D sites with Training data set sites circled in green. 
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FIGURE 5. Samples of scans classified into specific types of cases described in section 3.2. Each Example is centered 

on the radar location and shows information out to 150 km (~80 nmi) in range. 
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FIGURE 6. Originally Figure 3 in Richardson et al. 2017a, the resulting values of the 90

th
 Percentile of Z classified via 

visual inspection show distinct levels between Clear Air Bragg Scatter (CABS), Mixed cases with Bragg Scatter and 
precipitation, None (Clutter/Biota), and Precipitation. Precipitation could be rain or winter weather returns, so the 

graphic here cannot be used explicitly as a test threshold in the Light Rain study. A similar technique is explored to 
determine filters for ZDRBELR. 
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FIGURE 7. Density plot comparing the mode of ZDR points passing the Base Filters to the IQR of the same data from 
Vance AFB, OK (KVNX) during July 2016. (a) The full range of possible values. (b) Axes ranges are limited to focus 
on the region of most returns. (c)  The same axes limits as (b) but only shows the values remaining after the thresh-

old calculation of Equation (3). (d) Further limitation of the axes to assess fine-scale limits for this particular 
site/month combination. 
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FIGURE 8. Map of WSR-88D sites with Verification data set locations circled in blue. 
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FIGURE 9. Shade chart with data from the (a) Original and (b) New ZDRBELR methods from Midland/Odessa, TX (KMAF). The information from the Dry Snow and Bragg 

Scatter techniques are the same in each image as they were unchanged in relation to the Light Rain test. 
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FIGURE 10. Same as Figure 9 but for Springfield, MO (KSGF). 
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FIGURE 11. Same as Figure 9 but for Minneapolis, MN (KMPX). 
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FIGURE 12. Same as Figure 9 but for Dodge City, KS (KDDC). 
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FIGURE 13. Monthly Standard Deviations for each Site/Month combination used in the Verification data set with the original (dash blue) and New (Solid Orange) method of 
ZDRBELR. (a) Full scale view showing the singular large outlier near combination index 20. (b) Axes-limited view of the data in (a) for clarification of differences between 

the two methods. 
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FIGURE 14. Differences of the results shown in Figure 13. The dashed line at 0 is meant as a visual marker to ease 

discernment of increased standard deviation with the Original or New ZDRBELR method.  
 
 
 
 
 
 
 


